Cartes de développement

58 produits


  • Arduino Pro Portenta H7

    Arduino Arduino Pro Portenta H7

    Le Portenta H7 convient au format de l’Arduino MKR, mais amélioré avec les connecteur haute-densité à 80 broches de la famille Portenta. Programmez-le avec des langages de haut-niveau et de l’IA tout en exécutant des opérations avec une latence faible sur ses périphériques personnalisables. Le Portenta H7 exécute simultanément du code de haut niveau et des tâches en temps réel. La conception comprend deux processeurs qui peuvent exécuter des tâches en parallèle. Par exemple, il est possible d'exécuter du code compilé Arduino en même temps que du code MicroPython, et de faire communiquer les deux cœurs entre eux. La fonctionnalité de Portenta est double, elle peut soit fonctionner comme n'importe quelle autre carte microcontrôleur embarquée, soit comme le processeur principal d'un ordinateur embarqué. Utilisez la Carte support Portentapour transformer votre H7 en un ordinateur eNUC et révéler toutes les interfaces physiques du H7. Portenta peut facilement exécuter des processus crées avec TensorFlow™ Lite, vous pourriez avoir un des cœurs calculant un algorithme de vision par ordinateur à la volée, tandis que l'autre pourrait effectuer des opérations de bas niveau comme le contrôle d'un moteur, ou agir comme une interface utilisateur. Utilisez Portenta lorsque la performance est cruciale, et entre autres, nous la recommandons pour: Machines industrielles haut de gamme. Equipement de laboratoire. Vision par ordinateur. Automates programmables. Interfaces utilisateur compatibles pour l'industrie Contrôleur de robotique. Équipements pour tâches critiques. Ordinateur fixe dédié. Démarrage à grande vitesse du système d’exploitation (ms) Deux coeurs parallèles Le processeur principal du H7 est le STM32H747 double cœur comprenant un Cortex M7 fonctionnant à 480 MHz et un Cortex M4 fonctionnant à 240 MHz. Les deux cœurs communiquent via un mécanisme d’appel de procédure distante qui permet d'appeler des fonctions sur l'autre processeur de manière transparente. Les deux processeurs partagent tous les périphériques de la puce et peuvent faire fonctionner : Des projets Arduino avec le top du système d'exploitation ARM Mbed. Applications Mbed natives. MicroPython et JavaScript via un interpréteur. TensorFlow Lite Accélération matérielle L'une des caractéristiques les plus intéressantes du Portenta H7 est probablement la possibilité de connecter un moniteur externe pour construire votre propre ordinateur embarqué dédié avec une interface utilisateur. Ceci est possible grâce au GPU intégré du processeur STM32H747, le Chrom-ART Accelerator. Outre le GPU, la puce comprend un encodeur et un décodeur JPEG dédiés. A new standard for pinouts La famille Portenta ajoute deux connecteurs haute-densité à 80 broches au bas de la carte. Cela garantit la modularité pour une large gamme d’applications, en mettant simplement à niveau votre carte Portenta avec celle qui répond à vos besoins. Connectivitée embarquée Le module sans fil embarqué permet de gérer simultanément la connectivité WiFi et Bluetooth. L'interface WiFi peut être utilisée comme un point d'accès, comme une station ou comme un AP/STA bimode simultané et peut gérer un taux de transfert allant jusqu'à 65 Mbps. L'interface Bluetooth prend en charge Bluetooth Classic et BLE. Il est également possible d'exposer une série d'interfaces câblées différentes comme UART, SPI, Ethernet ou I²C, à la fois par le biais de certains connecteurs de style MKR, ou par le biais de la nouvelle paire de connecteurs industriels Arduino à 80 broches. Connecteur USB-C polyvalent Le connecteur de programmation de la carte est un port USB-C qui peut également être utilisé pour alimenter la carte, comme un hub USB, pour connecter un écran DisplayPort ou pour alimenter des appareils connectés par OTG. Caractéristiques L'Arduino Portenta H7 est basé sur le microcontrôleur STM32H747, série XI. Microcontrôleur ARM MCU basse consommation STM32H747XI Dual Cortex-M7+M4 32-bit (Fiche technique) Module radio Murata 1DX double WiFi 802.11b/g/n 65 Mbps et Bluetooth (BLE 5 via la pile Cordio, BLE 4,2 via la pile Arduino) (Fiche technique) Elément de sécurité (par défault) NXP SE0502 (Fiche technique) Alimentation de la carte (USB/VIN) 5 V Batterie supportée Cellule unique Li-Po, 3.7 V, 700 mAh Minimum (chargeur intégré) Tension de fonctionnement 3,3 V Connecteur d'affichage Hôte MIPI DSI et MIPI D-PHY pour l'interface avec un grand affichage à faible nombre de broches. GPU Accélérateur matériel graphique Chrom-ART Compteurs 22x compteurs et chien de garde UART 4x ports (2 avec contrôle de flux) PHY Ethernet 10 / 100 Mbps (uniquement par le port d'extension) Carte SD Interface pour connecteur de carte SD (part le port d’extension uniquement). Température de fonctionnement De -40 °C à +85 °C (de -104 °F à 185 °F) Broches MKR Utilisez n'importe quel carte industrielle MKR shield existante pour ce produit Connecteurs haute-densité Deux connecteurs à 80 broches permettent de mettre à disposition d'autres appareils tous les périphériques de la carte Interface caméra 8 bits, jusqu'à 80 MHz ADC 3x ADC avec16-bit max. résolution (jusqu’à 36 canaux, jusqu’à 3.6 MSPS) DAC 2x 12-bit DAC (1 MHz) USB-C Hôte / périphérique, haute / Pleine vitesse, alimentation Téléchargements Fiche technique Schémas Pinout

    € 129,95

    Membres € 116,96

  • Pinecone BL602 Evaluation Board

    Carte d'évaluation Pinecone BL602

    Rupture de stock

    Caractéristiques Interface USB vers série intégrée Antenne PCB intégrée Alimenté par Pineseed BL602 SoC utilisant le modèle Pinenut : tampon 12S 2 Mo de mémoire Flash Connexion USB-C Convient au projet BIY de maquette Sortie LED à trois couleurs à bord Dimensions : 25,4 x 44,0 mm Remarque : le câble USB n'est pas inclus.

    Rupture de stock

    € 8,95

    Membres identique

  • Dernier stock ! NVIDIA Jetson Nano Developer Kit (B01)

    Nvidia NVIDIA Jetson Nano Developer Kit (B01)

    2 en stock

    Prêt à commencer à développer des applications d’intelligence artificielle (IA) ? Le kit de développement NVIDIA Jetson Nano rend la puissance de l'IA moderne accessible aux créateurs, aux développeurs et aux étudiants. Quand vous pensez à NVIDIA, vous pensez probablement aux cartes graphiques et aux GPU, et à juste titre. Les antécédents de Nvidia garantissent que le Jetson Nano dispose de suffisamment de puissance pour exécuter même les tâches les plus exigeantes. Le kit de développement NVIDIA Jetson Nano est compatible avec le SDK JetPack de Nvidia et permet la classification d'images et la détection d'objets parmi de nombreuses applications. Applications Le kit de développement NVIDIA Jetson Nano peut exécuter plusieurs réseaux neuronaux en parallèle pour des applications telles que : Classement des images Segmentation Détection d'objet Traitement de la parole Spécifications GPU 128 cœurs Maxwell CPU ARM A57 quadricœur à 1,43 GHz Mémoire 4 Go LPDDR4 64 bits 25,6 Go/s Stockage microSD (non inclus) Encodage vidéo 4K @ 30 | 4x1080p à 30 | 9x720p à 30 (H.264/H.265) Décodage vidéo 4K à 60 | 2x4K à 30 | 8x1080p à 30 | 18x 720p à 30 (H.264/H.265) Caméra 1 x voies MIPI CSI-2 DPHY Connectivité Gigabit Ethernet, clé M.2 E Afficher HDMI 2.0 et eDP 1.4 USB 4x USB 3.0, USB 2.0 Micro-B Interfaces GPIO, I²C, I²S, SPI, UART Dimensions 100x80x29mm Inclus Module NVIDIA Jetson Nano et carte support Petite carte papier avec des informations de démarrage rapide et d'assistance Support à papier plié Téléchargements SDK JetPack Documentation Tutoriels Cours en ligne Wiki

    2 en stock

    € 229,00

    Membres € 206,10

  • Carte de développement RA-08H LoRaWAN avec RP2040 intégré et écran LCD 1,8" (868 Mhz)

    Carte de développement RA-08H LoRaWAN avec RP2040 intégré et écran LCD 1,8" (868 Mhz)

    La technologie Lora et les dispositifs Lora sont largement utilisés dans le domaine de l'Internet des objets (IoT), et de plus en plus de personnes rejoignent et apprennent le développement Lora, en faisant ainsi une partie indispensable du monde de l'IoT. Pour aider les débutants à mieux apprendre et développer la technologie Lora, une carte de développement Lora a été spécialement conçue pour les débutants, qui utilise RP2040 comme contrôleur principal et est équipée du module RA-08H qui prend en charge les protocoles Lora et LoRaWAN pour aider les utilisateurs à réaliser leur développement. RP2040 est une puce à architecture ARM Cortex-M0+ double c?ur, haute performance et basse consommation d'énergie, adaptée à l'IoT, aux robots, au contrôle, aux systèmes embarqués et à d'autres domaines d'application. RA-08H est fabriqué à partir de la puce RF ASR6601 autorisée par Semtech, qui prend en charge la bande de fréquence 868 MHz, dispose d'un MCU intégré à 32 MHz qui possède des fonctions plus puissantes que les modules RF ordinaires, et prend également en charge le contrôle par commandes AT. Cette carte conserve diverses interfaces fonctionnelles pour le développement, telles que l'interface Crowtail, le connecteur PIN à PIN qui mène aux ports GPIO, et fournit des sorties 3,3 V et 5 V, adaptées au développement et à l'utilisation des capteurs et modules électroniques couramment utilisés sur le marché. De plus, la carte réserve également une interface RS485, des interfaces SPI, I²C et UART, qui peuvent être compatibles avec plus de capteurs/modules. Outre les interfaces de développement de base, la carte intègre également certaines fonctions couramment utilisées, telles qu'un buzzer, un bouton personnalisé, des voyants d'indication tricolores rouge-jaune-vert, et un écran LCD 1,8 pouces avec interface SPI et une résolution de 128x160. Caractéristiques Utilise RP2040 comme contrôleur principal, avec deux c?urs de processeur ARM Cortex M0+ 32 bits (double c?ur), offrant une performance plus puissante Intègre le module RA-08H avec MCU de 32 MHz, prend en charge la bande de fréquence 868 MHz et le contrôle par commandes AT Ressources d'interface externe abondantes, compatibles avec les modules de la série Crowtail et d'autres modules d'interface courants sur le marché Intègre des fonctions couramment utilisées telles que le buzzer, le voyant lumineux, l'écran LCD et le bouton personnalisé, ce qui rend la création de projets plus concise et pratique Écran LCD 1,8 pouces 128x160 SPI-TFT, puce de pilote ST7735S Compatible avec Arduino/Micropython, facile à réaliser différents projets Spécifications Puce principale Raspberry Pi RP2040, 264 KB de SRAM intégrée, 4 MB de Flash intégrée sur la carte Processeur Double c?ur Arm Cortex-M0+ @ 133 MHz Bande de fréquence RA-08H 803-930 MHz Interface RA-08H Antenne externe, interface SMA ou interface de première génération IPEX Affichage LCD Écran LCD 1,8 pouces 128x160 SPI-TFT intégré sur la carte Résolution de l'écran LCD 128x160 Puce de pilote LCD ST7735S (SPI à 4 fils) Environnement de développement Arduino/MicroPython Interfaces 1x buzzer passif 4x boutons définis par l'utilisateur 6x LED programmables 1x interface de communication RS485 8x interfaces Crowtail 5 V (2x interfaces analogiques, 2x interfaces numériques, 2x UART, 2x I²C) 12x broches d'E/S universelles 5 V 14x broches d'E/S universelles 3,3 V 1x SPI commutable 3,3 V/5 V 1x UART commutable 3,3 V/5 V 3x I²C commutables 3,3 V/5 V Tension d'entrée de travail USB 5 V/1 A Température de fonctionnement -10°C à 65°C Dimensions 102 x 76,5 mm (L x l) Inclus 1x Carte de développement Lora RA-08H 1 x Antenne ressort Lora (868 MHz) 1x Antenne en caoutchouc Lora (868 Mhz) Téléchargements Wiki

    € 32,95

    Membres € 29,66

  • Dernier stock ! Adafruit CLUE – nRF52840 Express met Bluetooth LE

    Adafruit Adafruit CLUE – nRF52840 Express with Bluetooth LE

    1 en stock

    Caractéristiques Processeur Bluetooth LE Nordic nRF52840 - 1 Mo Flash, 256 Ko de RAM, processeur Cortex M4 64 MHz Écran TFT IPS couleur 1,3″ 240×240 pour du texte et des images haute résolution Alimentation à partir de n'importe quelle source de batterie 3-6 V (régulateur interne et diodes de protection) Deux boutons utilisateur A/B et un bouton de réinitialisation Mouvement 9-DoF série ST Micro - Accel/Gyro LSM6DS33 + magnétomètre LIS3MDL Capteur de proximité, de lumière, de couleur et de gestes APDS9960 Capteur sonore du microphone PDM Humidité SHT Température et pression barométrique/altitude du BMP280 Indicateur LED RVB NeoPixel 2 Mo de stockage flash interne pour l'enregistrement des données, les images, les polices ou le code CircuitPython Buzzer/haut-parleur pour émettre des tonalités et des bips Deux LED blanches brillantes à l'avant pour l'éclairage/détection des couleurs Connecteur Qwiic / STEMMA QT pour ajouter plus de capteurs, contrôleurs de moteur ou écrans via I²C. Vous pouvez connecter les capteurs GROVE I²C à l'aide d'un câble adaptateur. Programmable avec Arduino IDE ou CircuitPython

    1 en stock

    € 59,95

    Membres € 53,96

  • ESP32-S2-Saola-1R Development Board

    Espressif Carte de développement ESP32-S2-Saola-1R

    ESP32-S2-Saola-1R est une carte de développement basée sur ESP32-S2 de petite taille. La plupart des broches d'E/S sont réparties sur les embases de broches des deux côtés pour une interface facile. Les développeurs peuvent soit connecter des périphériques avec des câbles de démarrage, soit monter l'ESP32-S2-Saola-1R sur une planche à pain. L'ESP32-S2-Saola-1R est équipé du module ESP32-S2-WROVER, un module MCU Wi-Fi puissant et générique doté d'un riche ensemble de périphériques. C'est un choix idéal pour une grande variété de scénarios d'application liés à l'Internet des objets (IoT), à l'électronique portable et à la maison intelligente. La carte est dotée d'une antenne PCB et dispose d'un flash SPI externe de 4 Mo et d'une RAM pseudo statique SPI (PSRAM) supplémentaire de 2 Mo. Caractéristiques MCU ESP32-S2 intégré, microprocesseur Xtensa® monocœur LX7 32 bits, jusqu'à 240 MHz ROM de 128 Ko 320 Ko de mémoire SRAM 16 Ko de SRAM en RTC Wifi 802.11b/g/n Débit binaire : 802.11n jusqu'à 150 Mbps Agrégation A-MPDU et A-MSDU Prise en charge de l'intervalle de garde de 0,4 µs Plage de fréquence centrale du canal opérationnel : 2 412 ~ 2 484 MHz Matériel Interfaces : GPIO, SPI, LCD, UART, I²C, I²S, interface caméra, IR, compteur d'impulsions, LED PWM, TWAI (compatible ISO 11898-1), USB OTG 1.1, ADC, DAC, capteur tactile, capteur de température Oscillateur à cristal de 40 MHz Flash SPI de 4 Mo Tension de fonctionnement/Alimentation : 3,0 ~ 3,6 V Plage de température de fonctionnement : –40 ~ 85 °C Dimensions : 18 × 31 × 3,3 mm Applications Hub de capteurs IoT générique à faible consommation Enregistreurs de données IoT génériques à faible consommation Caméras pour le streaming vidéo Appareils par contournement (OTT) Périphériques USB Reconnaissance de la parole Reconnaissance d'images Réseau maillé Automatisation de la maison Panneau de contrôle de maison intelligente Bâtiment intelligent L'automatisation industrielle Agriculture intelligente Applications audio Applications de soins de santé Jouets compatibles Wi-Fi Électronique portable Applications de vente au détail et de restauration Machines de point de vente intelligentes

    € 22,95

    Membres € 20,66

  •  -25% Microchip AVR-IoT WA Development Board

    Microchip Carte de développement Microchip AVR-IoT WA

    La carte de développement AVR-IoT WA combine un puissant microcontrôleur AVR ATmega4808, un circuit intégré d'élément sécurisé CryptoAuthentication™ ATECC608A et le contrôleur réseau Wi-Fi ATWINC1510 entièrement certifié, qui fournit le moyen le plus simple et le plus efficace de connecter votre application intégrée à Amazon Web Services ( AWS). La carte comprend également un débogueur intégré et ne nécessite aucun matériel externe pour programmer et déboguer le MCU. Prêt à l'emploi, le MCU est préchargé avec une image de micrologiciel qui vous permet de vous connecter et d'envoyer rapidement des données à la plateforme AWS à l'aide des capteurs de température et de lumière intégrés. Une fois que vous êtes prêt à créer votre propre conception personnalisée, vous pouvez facilement générer du code à l'aide des bibliothèques de logiciels gratuits d'Atmel START ou de MPLAB Code Configurator (MCC). La carte AVR-IoT WA est prise en charge par deux environnements de développement intégrés (IDE) primés – Atmel Studio et Microchip MPLAB X IDE – vous donnant la liberté d'innover avec l'environnement de votre choix. Caractéristiques Microcontrôleur ATmega4808 Quatre LED utilisateur Deux boutons mécaniques Empreinte de l'en-tête mikroBUS Capteur de lumière TEMT6000 Capteur de température MCP9808 Dispositif CryptoAuthentication™ ATECC608A Module Wi-Fi WINC1510 Débogueur intégré Auto-ID pour l'identification de la carte dans Atmel Studio et Microchip MPLAB Une LED verte d'alimentation et d'état de la carte Programmation et débogage Port COM virtuel (CDC) Deux lignes DGI GPIO Alimenté par USB et par batterie Chargeur de batterie Li-Ion/LiPo intégré

    € 39,95€ 29,95

    Membres identique

  •  -20% SwiftIO – Swift-based Microcontroller Board

    SwiftIO – Swift-based Microcontroller Board

    SwiftIO propose un compilateur Swift complet et un environnement de framework qui s'exécute sur le microcontrôleur. La carte SwiftIO est une carte de circuit électronique compacte qui exécute Swift sur du métal nu, vous offrant un système qui peut être utilisé pour contrôler toutes sortes de projets électroniques. Caractéristiques Processeur croisé NXP i.MX RT1052 avec cœur ARM Cortex-M7 à 600 MHz Flash SPI de 8 Mo, SDRAM de 32 Mo Débogueur DAPLink intégré USB intégré vers UART pour la communication série LED RVB intégrée Prise SD intégrée 46x GPIO, 12x ADC, 14x PWM, 4x UART, 2x I²C, 2x SPI, etc. De nombreuses fonctionnalités avancées supplémentaires pour répondre aux besoins des utilisateurs avancés Prise en charge du RTOS Zephyr MadMachine IDE est le premier environnement de développement intégré pour SwiftIO, qui facilite l'écriture de code Swift et son téléchargement sur la carte.

    € 74,95€ 59,95

    Membres identique

  • Alchitry Au FPGA Development Board (Xilinx Artix 7)

    SparkFun Carte de développement Alchitry Au FPGA (Xilinx Artix 7)

    L'Au poursuit la tendance des cartes FPGA plus abordables et de plus en plus puissantes qui arrivent chaque année. Cette carte est un point de départ fantastique dans le monde des FPGA et le cœur de votre prochain projet. Enfin, maintenant que SparkFun construit cette carte, nous avons ajouté un connecteur Qwiic pour une intégration I²C facile ! L'Alchitry Au comprend un FPGA Xilinx Artix 7 XC7A35T-1C avec plus de 33 000 cellules logiques et 256 Mo de RAM DDR3. L'Au propose 102 broches d'E/S de niveau logique de 3,3 V, dont 20 peuvent être commutées à 1,8 V ; Neuf entrées analogiques différentielles ; Huit LED à usage général ; une horloge embarquée de 100 MHz qui peut être manipulée en interne par le FPGA ; un connecteur USB-C pour configurer et alimenter la carte ; et une interface USB vers série pour le transfert de données. Pour faciliter encore plus le démarrage, toutes les cartes Alchitry disposent d'un support complet de Lucid , d'une bibliothèque intégrée de composants utiles à utiliser dans votre projet et d'un débogueur ! Caractéristiques Artix 7 XC7A35T-1C - 33 280 cellules logiques 256 Mo de RAM DDR3 102 broches IO (niveau logique 3,3 V, 20 d'entre elles peuvent être commutées en 1,8 V pour LVDS) Neuf entrées analogiques différentielles (une dédiée, huit mélangées avec des E/S numériques) USB-C pour configurer et alimenter la carte Huit LED à usage général Un bouton (généralement utilisé comme réinitialisation) Horloge embarquée de 100 MHz (peut être multipliée en interne par le FPGA) Alimenté en 5 V via un port USB-C, des trous de 0,1' ou des en-têtes Interface USB vers série pour le transfert de données (jusqu'à 12 Mbauds) Connecteur Qwiic Dimensions : 65 x 45 mm

    € 149,95

    Membres € 134,96

  • Microchip PIC-IoT WA Development Board

    Microchip Carte de développement Microchip PIC-IoT WA

    Rupture de stock

    La carte de développement PIC-IoT WA combine un puissant microcontrôleur PIC24FJ128GA705, un circuit intégré d'élément sécurisé CryptoAuthentication™ ATECC608A et le contrôleur de réseau Wi-Fi ATWINC1510 entièrement certifié, qui fournit le moyen le plus simple et le plus efficace de connecter votre application intégrée à Amazon Web Services ( AWS). La carte comprend également un débogueur intégré et ne nécessite aucun matériel externe pour programmer et déboguer le MCU. Prêt à l'emploi, le MCU est livré préchargé avec un micrologiciel qui vous permet de vous connecter et d'envoyer rapidement des données à la plateforme AWS à l'aide des capteurs de température et de lumière intégrés. Une fois que vous êtes prêt à créer votre propre conception personnalisée, vous pouvez facilement générer du code à l'aide des bibliothèques de logiciels gratuits de MPLAB Code Configurator (MCC). La carte PIC-IoT WA est prise en charge par MPLAB X IDE. Caractéristiques Microcontrôleur PIC24FJ128GA705 Mémoire Flash de 128 Ko et SRAM de 16 Ko Module Wi-Fi ATWINC1510 Contrôleur de réseau IoT monobande 2,4 GHz b/g/n, module précertifié Dispositif CryptoAuthentication™ ATECC608A Stockage protégé pour 16 clés, SHA256, AES-CCM, ECDH (Elliptic Curve Diffie-Hellman), ECDSA Autres fonctionnalités de la carte Quatre LED d'état La LED bleue indique une connexion au réseau Wi-Fi La LED verte indique une connexion aux serveurs AWS La LED jaune indique qu'un paquet de données de capteur a été publié avec succès sur les serveurs AWS MQTT LED rouge, une erreur s'est produite Deux boutons mécaniques Capteur de lumière TEMT6000 Capteur de température MCP9808 En-tête mikroBUS pour interfacer avec MikroElekronika Click Boards™ Auto-ID pour l'identification de la carte dans Microchip MPLAB Débogueur intégré Programmation et débogage Port COM virtuel (CDC) Un canal d'analyseur logique (DGI GPIO) Alimenté par USB et par batterie Chargeur de batterie Li-Ion/LiPo intégré

    Rupture de stock

    € 39,95

    Membres € 35,96

  • LILYGO TTGO T-Display RP2040 Development Board

    LILYGO LILYGO T-Display RP2040 Development Board

    LILYGO t-display RP2040 Raspberry Pi Module carte de développement LCD 1,14 pouces Cette carte est basée sur un Raspberry Pi Pico RP2040 avec Dual Cortex-M0+ et 4 Mo de mémoire Flash. Il est équipé d’un écran IPS couleur de 1,14 pouces. L'écran ST7789V a une résolution de 135 x 240 pixels et est connecté via l'interface SPI. Caractéristiques MCU RP2040 Cortex M0+ à double bras Éclair 4 Mo Interfaces de bus 2x UART, 2x SPI, 2x I²C, 6x PWM Langage de programmation C/C++, MicroPython Prise en charge de la bibliothèque d'apprentissage automatique TensorFlow Lite Fonctions embarquées Boutons : IO06+IO07, détection de puissance de la batterie Écran TFT Écran LCD IPS ST7789V de 1,14 pouces Résolution 135x240, couleur Interface Interface SPI à 4 fils Température de fonctionnement -20°C ~ +70°C Alimentation électrique fonctionnelle 3,3 V Connecteur JST-GH 1,25 mm 2 broches Inclus Écran LILYGO T RP2040 En-têtes non soudés Câble JST Téléchargements Brochage GitHub

    € 19,95

    Membres € 17,96

  • SparkFun RedBoard Qwiic

    SparkFun SparkFun RedBoard Qwiic

    Caractéristiques Microcontrôleur ATmega328 avec chargeur de démarrage Optiboot Compatible avec le bouclier R3 Convertisseur série-USB CH340C Cavalier de niveau de tension de 3,3 V à 5 V Cavaliers A4/A5 Régulateur de tension AP2112 Rubrique FAI Tension d'entrée : 7 V - 15 V 1 connexion Qwiic Vitesse d'horloge de 16 MHz Mémoire Flash 32 Ko Construction entièrement CMS bouton de réinitialisation amélioré

    € 27,95

    Membres € 25,16

  • PÚCA DSP ESP32 Development Board

    Carte de développement PÚCA DSP ESP32

    PÚCA DSP est une carte de développement ESP32 open source et compatible Arduino pour les applications audio et de traitement du signal numérique (DSP) avec des fonctionnalités de traitement audio étendues. Il fournit des entrées audio, des sorties audio, un réseau de microphones à faible bruit, une option de haut-parleur de test intégrée, une mémoire supplémentaire, une gestion de la charge de la batterie et une protection ESD, le tout sur un petit PCB compatible avec une maquette. Synthétiseurs, installations, interface utilisateur vocale et plus encore PÚCA DSP peut être utilisé pour une large gamme d'applications DSP, y compris, mais sans s'y limiter, celles dans les domaines de la musique, de l'art, de la technologie créative et de la technologie adaptative. Les exemples liés à la musique incluent la synthèse musicale numérique, l'enregistrement mobile, les haut-parleurs Bluetooth, les microphones directionnels sans fil au niveau de la ligne et la conception d'instruments de musique intelligents. Les exemples liés à l'art incluent les réseaux de capteurs acoustiques, les installations d'art sonore et les applications de radio Internet. Les exemples liés à la technologie créative et adaptative incluent la conception d'interfaces utilisateur vocales (VUI) et l'audio Web pour l'Internet des sons. Conception compacte et intégrée PÚCA DSP a été conçu pour la portabilité. Lorsqu'il est utilisé avec une batterie rechargeable externe de 3,7 V, il peut être déployé presque n'importe où ou intégré à presque n'importe quel appareil, instrument ou installation. Sa conception est le résultat de mois d'expérimentation avec diverses cartes de développement ESP32, cartes de dérivation DAC, cartes de dérivation ADC, cartes de dérivation microphone et cartes de dérivation de connecteur audio, et – malgré sa petite taille – il parvient à fournir toutes ces fonctionnalités en un seul. conseil. Et cela sans compromettre la qualité du signal. Caractéristiques Processeur et mémoire Processeur Espressif ESP32 Pico D4 Double cœur 32 bits 80 MHz / 160 MHz / 240 MHz 4 Mo SPI Flash avec 8 Mo de PSRAM supplémentaire (édition originale) Wi-Fi sans fil 2,4 GHz 802.11b/g/n BluetoothBLE 4.2 Antenne 3D l'audio Codec audio stéréo Wolfson WM8978 Entrée ligne audio sur connecteur stéréo 3,5 mm Audio Casque / Sortie Ligne sur connecteur stéréo 3,5 mm Entrée ligne auxiliaire stéréo, sortie audio mono acheminée vers l'en-tête GPIO 2x micros MEMS Knowles SPM0687LR5H-1 Protection ESD sur toutes les entrées et sorties audio Prise en charge des fréquences d'échantillonnage de 8, 11,025, 12, 16, 22,05, 24, 32, 44,1 et 48 kHz Pilote de haut-parleur 1 W, acheminé vers l'en-tête GPIO DAC SNR 98 dB, THD -84 dB (pondération « A » à 48 kHz) ADC SNR 95 dB, THD -84 dB (pondération « A » à 48 kHz) Impédance d'entrée ligne : 1 MOhm Impédance de sortie ligne : 33 Ohms Facteur de forme et connectivité Compatible avec la planche à pain 70x24mm 11x broches GPIO réparties sur un en-tête au pas de 2,54 mm, avec accès aux deux canaux ESP32 ADC, JTAG et broches tactiles capacitives USB 2.0 sur connecteur USB Type C Pouvoir Batterie rechargeable au lithium polymère 3,7/4,2 V, USB ou source d'alimentation externe 5 V CC L'ESP32 et le codec audio peuvent être placés en modes faible consommation sous contrôle logiciel Détection du niveau de tension de la batterie Protection ESD sur le bus de données USB Téléchargements GitHub Fiche de données Gauche Campagne de fourniture de masse (comprend une FAQ) Présentation du matériel Programmation du tableau Le codec audio

    € 69,95

    Membres € 62,96

  • M5Stack AtomU ESP32 Ontwikkelingskit met USB-A

    M5Stack Kit de développement M5Stack AtomU ESP32 avec USB-A

    ATOM U est un kit de développement IdO compact à faible consommation d’énergie pour la reconnaissance vocale. Il utilise un puce ESP32, dotée de 2 microprocesseurs Xtensa 32 bits LX6 à faible consommation, dont la fréquence principale peut atteindre 240 MHz. Interface USB-A intégrée, émetteur IR, LED RGB programmable. Plug-and-play, facile à charger et à télécharger des programmes. Wi-Fi intégré et microphone numérique SPM1423 (I2S) pour un enregistrement sonore clair. Adapté aux IHM, Speech-to-Text (STT). Développement Low-code development L’ATOM U prend en charge la plateforme de programmation graphique UIFlow, sans script, en mode « cloud push ». Entièrement compatible avec Arduino, MicroPython, ESP32-IDF et d’autres plateformes de développement courantes, elle permet de créer rapidement diverses applications. L’ATOM U est doté d’un port USB-A pour la programmation/l’alimentation, d’un émetteur infrarouge, d’une LED RGB programmable x1, d’un bouton x1. Un circuit RF finement ajusté permet une communication sans fil stable et fiable. Grande capacité d’extension ATOM U permet d’accéder facilement au système matériel et logiciel de M5Stack. Caractéristiques ESP32-PICO-D4 ( Wi-Fi 2.4GHz à mode double ) LED RGB et bouton programmables intégrés Design compact Émetteur IR intégré Brochage extensible et port GROVE Plate-forme de développement : UIFlow MicroPython Arduino Spécifications ESP32-PICO-D4 240 MHz dual core, 600 DMIPS, 520 KB SRAM, 2.4 G Wi-Fi Microphone SPM1423 Sensibilité du microphone Valeur caractéristique 94 dB SPL@1 KHz : -22 dBFS Rapport signal/bruit du microphone 94 dB SPL@1 KHz, A-weighted Typical value: 61.4 dB Courant de travail en veille 40.4 mA Fréquence sonore d'entrée 100 Hz ~ 10 KHz Fréquence d'horloge PDM 1.0 ~ 3.25 MHz Poids 8.4 g Taille du produit 52 x 20 x 10 mm Téléchargements Documentation

    € 19,95

    Membres € 17,96

  • Carte de développement LoRa LILYGO T-Beam V1.2 ESP32 dotée d’un écran de 0,96" (EU868)

    LILYGO Carte de développement LoRa LILYGO T-Beam V1.2 ESP32 dotée d’un écran de 0,96" (EU868)

    Cette carte de développement LoRa LILYGO T-Beam V1.2 ESP32 est fournie avec le microcode Meshtastic préinstallé et un écran de 0,96' soudé. La carte est équipée d’un Transceiver LoRa Semtech SX1262 et d’un récepteur GPS NEO-6M. GPS Module GPS NEO-6M : Support du protocole GPS Horloge RTC intégrée : Support des interruptions et réveil (interrupt/wakeup) LoRa Transceiver LoRa à longue portée, de faible puissance Sensibilité élevée : -i48 dBm Vitesse de Transmission : 300 kbps Version : SX1276 (868 MHz) Microcode : Meshtastic Affichage OLED : 0,96 pouce  Driver : SSD1306 Spécifications Microcontrôleur ESP32 Mémoire Flash 4 MB Mémoire PSRAM 8 MB Chip série CH9102 Protocole sans-fil Wi-Fi + Bluetooth 4.2 MPU AXP2101 Fonctions intégrées 3 boutons (Power + IO38 + Reset) Alimentation Micro USB, batteries 18650 Antenne Antenne WiFi 3D Antenne LoRa Antenne céramique GPS Inclus 1x LILYGO T-Beam V1.2 CH9102 1x Antenne 868 MHz 1x Afficheur 0.96' LCD (128x64) soudé 2x Connecteurs en ligne Téléchargements GitHub Schematics

    € 49,95

    Membres € 44,96

  •  -20% OKdo E1 Development Board

    Farnell element14 Carte de développement OKdo E1

    L'OKdo E1 est une carte de développement à très faible coût basée sur le microcontrôleur Arm Cortex-M33 double cœur NXP LPC55S69JBD100. La carte E1 est parfaite pour l'IoT industriel, le contrôle et l'automatisation des bâtiments, l'électronique grand public et les applications générales intégrées et sécurisées. Caractéristiques Processeur avec Arm TrustZone, unité à virgule flottante (FPU) et unité de protection de la mémoire (MPU) Coprocesseur CASPER Crypto pour permettre l'accélération matérielle de certains algorithmes cryptographiques asymétriques Accélérateur matériel PowerQuad pour les fonctions DSP à virgule fixe et flottante Fonction physique non clonable (PUF) SRAM pour la génération, le stockage et la reconstruction de clés Module PRINCE pour le cryptage et le décryptage en temps réel des données flash Moteurs AES-256 et SHA2 Jusqu'à neuf interfaces Flexcomm. Chaque interface Flexcomm peut être sélectionnée par logiciel pour être une interface USART, SPI, I²C et I²S Contrôleur hôte/périphérique USB 2.0 haute vitesse avec PHY sur puce Contrôleur hôte/périphérique USB 2.0 pleine vitesse avec PHY sur puce Jusqu'à 64 GPIO Interface de carte d'entrée/sortie numérique sécurisée (SD/MMC et SDIO) Caractéristiques Microcontrôleur flash LPC55S69JBD100 640 Ko Débogueur CMSIS-DAP v1.0.7 intégré basé sur LPC11U35 La PLL interne prend en charge un fonctionnement jusqu'à 100 MHz, 16 MHz peuvent être montés pour un fonctionnement complet à 150 MHz. SRAM 320 Ko Cristal 32 kHz pour horloge en temps réel 4 commutateurs utilisateur LED 3 couleurs Connecteur USB utilisateur Connecteurs d'extension 2 voies 16 voies UART sur port COM virtuel USB

    € 24,95€ 19,95

    Membres identique

  • LILYGO TTGO T-Journal ESP32 Camera Module Development Board (Normale Lens)

    LILYGO LILYGO T-Journal ESP32 Camera Module Development Board (Normal Lens)

    Le T-Journal est une carte de développement de caméra ESP32 peu coûteuse qui comprend une caméra OV2640, une antenne, un écran OLED de 0,91 pouce, des GPIO exposés et une interface micro-USB. Cela facilite et accélère le téléchargement de code sur le tableau. Caractéristiques Chipset Expressif-ESP32-PCIO-D4 Microprocesseur Xtensa simple/double cœur 32 bits LX6 240 MHz FLASH QSPI flash/SRAM, jusqu'à 4x 16 Mo SRAM 520 Ko de SRAM Réinitialisation de la clé, IO32 Écran 0,91' SSD1306 Voyant d'alimentation rouge USB vers TTL CP2104 Appareil photo OV2640, 2 mégapixels Moteur de direction servo analogique Horloge embarquée, oscillateur à cristal de 40 MHz Tension de fonctionnement 2,3-3,6 V Courant de fonctionnement environ 160 mA Plage de température de fonctionnement -40 ℃ ~ +85 ℃ Dimensions 64,57 x 23,98 mm Alimentation USB 5 V/1 A Courant de charge 1 A Batterie Batterie au lithium 3,7 V Wifi Norme FCC/CE/TELEC/KCC/SRRC/NCC (puce ESP32) Protocole 802.11 b/g/n/e/i (802.11n, vitesse jusqu'à 150 Mbps) Polymérisation A-MPDU et A-MSDU, prise en charge de 0,4 μS Intervalle de protection Gamme de fréquences 2,4 GHz ~ 2,5 GHz (2 400 M ~ 2 483,5 M) Puissance d'émission 22 dBm Distance de communication 300m Bluetooth Le protocole est conforme aux normes Bluetooth v4.2BR/EDR et BLE Fréquence radio avec une sensibilité de -98 dBm Récepteur NZIF Émetteur AFH de classe 1, classe 2 et classe 3 Fréquence audio Fréquence audio CVSD et SBC Logiciel Mode Wi-Fi Station/SoftAP/SoftAP+Station/P2P Mécanisme de sécurité WPA/WPA2/WPA2-Enterprise/WPS Type de cryptage AES/RSA/ECC/SHA Mise à niveau du micrologiciel Téléchargement UART/OTA (via réseau/hôte pour télécharger et écrire le micrologiciel) Développement de logiciels Prise en charge du développement de serveurs cloud/SDK pour le développement du micrologiciel utilisateur Protocole réseau IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT Configuration utilisateur jeu d'instructions AT+, serveur cloud, application Android/iOS OS FreeRTOS Inclus 1x module caméra ESP32 (objectif normal) 1x antenne Wi-Fi 1x câble d'alimentation Téléchargements Bibliothèque de caméras pour Arduino

    € 29,95

    Membres € 26,96

  • ESP32-S2-Saola-1M Development Board

    Espressif Carte de développement ESP32-S2-Saola-1M

    ESP32-S2-Saola-1M est une carte de développement basée sur ESP32-S2 de petite taille. La plupart des broches d'E/S sont réparties sur les embases de broches des deux côtés pour une interface facile. Les développeurs peuvent soit connecter des périphériques avec des câbles de démarrage, soit monter l'ESP32-S2-Saola-1M sur une planche à pain. L'ESP32-S2-Saola-1M est équipé du module ESP32-S2-WROOM, un module MCU Wi-Fi puissant et générique doté d'un riche ensemble de périphériques. C'est un choix idéal pour une grande variété de scénarios d'application liés à l'Internet des objets (IoT), à l'électronique portable et à la maison intelligente. La carte est dotée d'une antenne PCB et dispose d'un flash SPI externe de 4 Mo. Caractéristiques MCU ESP32-S2 intégré, microprocesseur Xtensa® monocœur LX7 32 bits, jusqu'à 240 MHz ROM de 128 Ko 320 Ko de mémoire SRAM 16 Ko de SRAM en RTC Wifi 802.11b/g/n Débit binaire : 802.11n jusqu'à 150 Mbps Agrégation A-MPDU et A-MSDU Prise en charge de l'intervalle de garde de 0,4 µs Plage de fréquence centrale du canal opérationnel : 2 412 ~ 2 484 MHz Matériel Interfaces : GPIO, SPI, LCD, UART, I²C, I²S, interface caméra, IR, compteur d'impulsions, LED PWM, TWAI (compatible ISO 11898-1), USB OTG 1.1, ADC, DAC, capteur tactile, capteur de température Oscillateur à cristal de 40 MHz Flash SPI de 4 Mo Tension de fonctionnement/Alimentation : 3,0 ~ 3,6 V Plage de température de fonctionnement : –40 ~ 85 °C Dimensions : 18 × 31 × 3,3 mm Applications Hub de capteurs IoT générique à faible consommation Enregistreurs de données IoT génériques à faible consommation Caméras pour le streaming vidéo Appareils par contournement (OTT) Périphériques USB Reconnaissance de la parole Reconnaissance d'images Réseau maillé Automatisation de la maison Panneau de contrôle de maison intelligente Bâtiment intelligent L'automatisation industrielle Agriculture intelligente Applications audio Applications de soins de santé Jouets compatibles Wi-Fi Électronique portable Applications de vente au détail et de restauration Machines de point de vente intelligentes

    € 29,95

    Membres € 26,96

  • 01Space RP2040-0.42LCD Development Board

    Carte de développement 01Space RP2040-0.42LCD

    Carte de développement compacte compatible Arduino, MicroPython et CircuitPython alimentée par Raspberry Pi RP2040 RP2040-0.42LCD est une carte de développement hautes performances avec écran LCD intégré de 0,42' (résolution 70x40) avec interfaces numériques flexibles. Il intègre la puce du microcontrôleur RP2040 du Raspberry Pi. Le RP2040 est doté d'un processeur Arm Cortex-M0+ double cœur cadencé à 133 MHz avec 264 Ko de SRAM interne et 2 Mo de stockage flash. Caractéristiques SoC Microcontrôleur Raspberry Pi RP2040 double cœur Cortex-M0+ jusqu'à 125 MHz, avec 264 Ko de SRAM Stockage Flash SPI de 2 Mo Afficher OLED de 0,42 pouce USB 1x port USB Type-C pour l'alimentation et la programmation Expansion – Connecteur Qwiic I²C – Embases à 7 et 8 broches avec jusqu'à 11x GPIO, 2x SPI, 2x I²C, 4x ADC, 1x UART, 5 V, 3,3 V, VBAT, GND Divers – Boutons de réinitialisation et de démarrage – LED RVB, LED d'alimentation Source de courant – 5 V via port USB-C ou Vin - Broche VBAT pour l'entrée de la batterie – Régulateur 3,3 V avec sortie crête 500 mA Dimensions 23,5x18mm Poids 2,5g Téléchargements GitHub

    € 19,95

    Membres € 17,96

  • Sipeed Longan Nano – RISC-V GD32VF103CBT6 Development Board

    Seeed Studio Sipeed Longan Nano – RISC-V GD32VF103CBT6 Development Board

    Rupture de stock

    Carte de développement Longan Nano, conception de disposition de broches à double rangée, espacement des aiguilles de 700 mil, peut être directement insérée dans la planche à pain ; Oscillateur à cristal passif 8M intégré, oscillateur à cristal basse vitesse RTC 32,768 kHz, emplacement Mini TF et utilisation d'une interface USB de type C. Longan Nano prend en charge plusieurs méthodes de téléchargement : téléchargement USB DFU, téléchargement UART ISP, téléchargement JTAG. En mode de téléchargement USB DFU, vous n'avez besoin que d'un câble USB Type-C pour télécharger le programme sur la carte de développement. Dans le même temps, le Longan Nano prend en charge l'interface JTAG standard, qui peut être déboguée en ligne à l'aide du débogueur RISC-V disponible dans le commerce ou d'un débogueur compatible JTAG tel que J-Link. Entre-temps, Sipeed a adapté l'IDE PlatformIO pour la carte de développement Longan Nano, qui peut être développée visuellement sur plusieurs plateformes, telles que Windows/Linux : https://github.com/sipeed/platform-gd32v Caractéristiques Flash intégré de 128 Ko, SRAM de 32 Ko 4 minuteries à usage général de 16 bits, 2 minuteries de base de 16 bits, 1 minuterie avancée de 16 bits Chien de garde, RTC, Systick 3x USART, 2x I²C, 3x SPI, 2x I²S, 2x CAN, 1x USBFS (OTG) 2x ADC (10 canaux), 2x DAC Spécifications techniques CPU GD32VF103CBT6 basé sur le cœur RISC-V 32 bits Consommation électrique du noyau À peine 1/3 du Cortex-M3 traditionnel Intégré Mémoire flash de 128 Ko, mémoire SRAM de 32 Ko Périphérique - 4x minuterie à usage général 16 bits, 2x minuterie de base 16 bits, 1x minuterie avancée 16 bits - Chien de garde, RTC, Systick - 3x USART, 2x I²C, 3x SPI, 2x I²S, 2x CAN, 1x USBFS (OTG), - 2x ADC (10 canaux), 2x DAC Logiciel EDI PlatformIO IDE, supporte le débogage, Arduino Compiler la chaîne d'outils et le débogueur GCC, OpenOCD Système opérateur Fil RT、LiteOS Matériel Extension matérielle Emplacement pour carte TF court Extension de l'affichage Extension de bloc FPC 8 broches 0,5 mm 160 x 80 RVB IPS LCD (interface SPI) Interface de débogage 2x4 broches mènent à l'interface de débogage JTAG Connecteur Goupille à double rangée au pas de 2,54 Cristal Cristal passif haute vitesse 8 MHz + cristal RTC basse vitesse 32,768 kHz

    Rupture de stock

    € 9,95

    Membres € 8,96

  • Adafruit FT232H Breakout (USB to GPIO, SPI, I²C)

    Adafruit Adafruit FT232H Breakout (USB vers GPIO, SPI, I²C)

    Ne serait-il pas sympa de piloter un petit écran OLED, de lire un capteur de couleur, ou même de faire clignoter quelques LED directement depuis votre ordinateur ? Bien sûr, vous pouvez programmer un Arduino ou un Trinket pour qu'il communique avec ces dispositifs et votre ordinateur, mais pourquoi votre ordinateur ne pourrait-il pas communiquer lui-même avec ces périphériques et autres capteurs ? Eh bien, maintenant votre ordinateur peut parler à des appareils en utilisant la carte FT232H Breakout d'Adafruit !   Que peut faire la puce FT232H ? Cette puce de FTDI est similaire à leur convertisseur USB-série mais ajoute un 'moteur série synchrone multi-protocole' qui lui permet de parler de nombreux protocoles communs comme SPI, I²C, UART série, JTAG, et plus encore ! Il y a même une poignée de ports GPIO numériques que vous pouvez lire et écrire pour faire des choses comme faire clignoter des LED, lire des interrupteurs ou des boutons, etc. Le FT232H Breakout est un petit couteau suisse pour les protocoles série pour votre ordinateur !   Cette carte est utile lorsque vous souhaitez utiliser Python (par exemple) pour tester rapidement un dispositif qui utilise I²C, SPI ou de simples E/S à usage général. Il n'y a pas de firmware à gérer, donc vous n'avez pas à vous occuper de comment envoyer/recevoir des données vers/depuis un intermédiaire Arduino qui les envoie/reçoit vers/depuis un capteur, un écran ou un autre composant. Ce module possède une puce FT232H et une EEPROM pour la configuration. Spécifications Dimensions : 23 x 38 x 4 mm (0,9 x 1,5 x 0,2") 23 x 38 x 4 mm (0,9 x 1,5 x 0,2") Poids : 3.4 g Téléchargements Fichiers CAD

    € 22,95

    Membres € 20,66

  • Teensy 4.1 Development Board

    Conseil de développement Teensy 4.1

    Rupture de stock

    Caractéristiques ARM Cortex-M7 à 600 MHz 2 ports USB, tous deux 480 Mbit/s Flash 2048K (64K réservés à la récupération et à l'émulation EEPROM) 1024 Ko de RAM (512 Ko sont étroitement couplés) 2 audionumériques I2S 3 bus CAN (1 avec CAN FD) 1 audio numérique S/PDIF 3 SPI, tous avec FIFO de 16 mots 1 SDIO (4 bits) SD native 3 I2C, tous avec FIFO 4 octets 7 séries, toutes avec FIFO 4 octets 32 canaux DMA à usage général 31 broches PWM 40 broches numériques, toutes interruptions 14 broches analogiques, 2 ADC sur puce Générateur de nombres aléatoires Accélération cryptographique Pipeline de traitement des pixels RTC pour la date/heure Déclenchement croisé périphérique FlexIO programmable Gestion tout ou rien de l'alimentation Emplacement USB Le port USB Host du Teensy 4.1 vous permet de connecter des périphériques USB tels que des claviers et des instruments de musique MIDI. Un connecteur à 5 broches et un câble hôte USB sont nécessaires pour connecter un périphérique USB. Vous pouvez également utiliser l'un de ces câbles pour vous connecter aux broches USB. Mémoire Au bas du Teensy 4.1 se trouvent des emplacements pour souder 2 puces mémoire. La plus petite zone est destinée à une puce PSRAM SOIC-8. L'emplacement le plus grand est destiné à la mémoire flash QSPI. Consommation d'énergie &; Gestion Lorsqu'il fonctionne à 600 MHz, le Teensy 4.1 consomme environ 100 mA d'énergie et prend en charge la mise à l'échelle dynamique de l'horloge. Contrairement aux microcontrôleurs traditionnels, où la modification de la vitesse d'horloge entraîne des débits en bauds incorrects et d'autres problèmes, le matériel Teensy 4.1 et la prise en charge logicielle de Teensyduino pour les fonctions de synchronisation Arduino sont conçus pour permettre des changements de vitesse dynamiques. Les débits en bauds série, les fréquences d'échantillonnage du streaming audio et les fonctions Arduino telles que delay() et millis(), ainsi que les extensions Teensyduino telles que IntervalTimer et elapsedMillis, continuent de fonctionner correctement à mesure que la vitesse du processeur change. Teensy 4.1 offre également une fonction de mise hors tension. En connectant un bouton-poussoir à la broche On/Off, l'alimentation 3,3 V peut être complètement coupée en appuyant sur le bouton pendant cinq secondes et réactivée en appuyant brièvement sur le bouton. Lorsqu'une pile bouton est connectée au VBAT, le RTC du Teensy 4.1 continue également de maintenir la date et l'heure lorsque l'alimentation est coupée. Teensy 4.1 peut également être overclocké, bien au-dessus de 600 MHz ! L'ARM Cortex-M7 apporte de nombreuses fonctionnalités de processeur puissantes à une plate-forme de microcontrôleur précise en temps réel. Le Cortex-M7 est un processeur superscaler à double problème, ce qui signifie que le M7 peut exécuter deux instructions par cycle d'horloge, à 600 MHz ! Bien entendu, l’exécution simultanée de deux instructions dépend de l’ordre des instructions et des registres par le compilateur. Les premiers tests ont montré que le code C++ compilé par Arduino a tendance à exécuter deux instructions environ 40 à 50 % du temps lors de l'exécution d'un travail numérique intensif utilisant des entiers et des pointeurs. Le Cortex-M7 est le premier microcontrôleur ARM à utiliser la prédiction de branchement. Pour M4, les boucles et tout autre code utilisant le branchement, cela peut prendre trois cycles d'horloge. Avec M7, après qu'une boucle a été exécutée plusieurs fois, la prédiction de branchement supprime cette surcharge, permettant à l'instruction de branchement de s'exécuter en un seul cycle d'horloge. La mémoire étroitement couplée est une fonctionnalité unique qui permet au Cortex-M7 de fournir un accès rapide à la mémoire en un seul cycle à l'aide d'une paire de bus de 64 bits de large. Le bus ITCM fournit un chemin de 64 bits pour la récupération des instructions. Le bus DTCM est une paire de chemins de 32 bits, permettant au M7 d'effectuer jusqu'à deux accès mémoire distincts dans le même cycle. Ces bus extrêmement rapides diffèrent du bus principal AXI du M7, qui permet d'accéder à d'autres mémoires et périphériques. 512 de mémoire sont accessibles en tant que mémoire étroitement couplée. Teensyduino mappe automatiquement votre code d'esquisse Arduino sur ITCM et toute l'utilisation de la mémoire non malloc sur le DTCM rapide, à moins que vous n'ajoutiez de nouveaux mots-clés pour remplacer la valeur par défaut optimisée. La mémoire non utilisée sur les bus étroitement couplés est optimisée pour l'accès DMA par les périphériques. Étant donné que la majeure partie de l'accès à la mémoire du M7 s'effectue sur les deux bus étroitement couplés, les puissants périphériques basés sur DMA disposent d'un excellent accès à la mémoire non TCM pour des E/S très efficaces. Le processeur Cortex-M7 du Teensy 4.1 contient une unité à virgule flottante (FPU) qui prend en charge à la fois le « double » 64 bits et le « float » 32 bits. Avec le FPU de M4 sur Teensy 3.5 et 3.6, ainsi que les puces Atmel SAMD51, seul le matériel flottant 32 bits est accéléré. Toute utilisation de fonctions doubles, doubles comme log(), sin(), cos() signifie des mathématiques lentes implémentées par logiciel. Teensy 4.1 exécute tout cela avec du matériel FPU. Pour plus d'informations, consultez la page officielle Teensy 4.1 ici .

    Rupture de stock

    € 39,95

    Membres € 35,96

  • SparkFun RP2040 mikroBUS Development Board

    SparkFun Carte de développement mikroBUS SparkFun RP2040

    La carte de développement mikroBUS SparkFun RP2040 est une plate-forme hautes performances à faible coût avec des interfaces numériques flexibles dotées du microcontrôleur RP2040 de la Raspberry Pi Foundation. Outre la disposition des broches Thing Plus ou Feather PTH, la carte comprend également un emplacement pour carte microSD, une mémoire flash de 16 Mo (128 Mbits), un connecteur de batterie monocellulaire JST (avec un circuit de charge et un capteur de jauge de carburant), une LED RVB WS2812 adressable. , broches JTAG PTH, quatre trous de montage (vis 4-40), nos connecteurs Qwiic signature et une prise mikroBUS. La norme mikroBUS a été développée par MikroElektronika. Semblable aux interfaces Qwiic et MicroMod, la prise mikroBUS fournit une connexion standardisée pour les cartes Click supplémentaires à connecter à une carte de développement et est composée d'une paire d'embases femelles à 8 broches avec une configuration de broches standardisée. Les broches se composent de trois groupes de broches de communication (SPI, UART et I²C), de six broches supplémentaires (PWM, interruption, entrée analogique, réinitialisation et sélection de puce) et de deux groupes d'alimentation (3,3 V et 5 V). Le RP2040 est pris en charge avec les environnements de développement multiplateformes C/C++ et MicroPython, y compris un accès facile au débogage d'exécution. Il intègre des routines de démarrage UF2 et de virgule flottante dans la puce. Bien que la puce dispose d'une grande quantité de RAM interne, la carte comprend 16 Mo supplémentaires de mémoire flash QSPI externe pour stocker le code du programme. Le RP2040 contient deux processeurs ARM Cortex-M0+ (jusqu'à 133 MHz) et propose : 264 Ko de SRAM intégrée dans six banques 6 IO dédiées pour SPI Flash (supportant XIP) 30 GPIO multifonctions : Matériel dédié aux périphériques couramment utilisés E/S programmables pour une prise en charge étendue des périphériques Quatre canaux ADC 12 bits avec capteur de température interne (jusqu'à 0,5 MSa/s) Fonctionnalité hôte/périphérique USB 1.1 Caractéristiques (Carte de développement SparkFun RP2040 mikroBUS) Microcontrôleur RP2040 de la Raspberry Pi Foundation 18 broches GPIO multifonctions Quatre canaux ADC 12 bits disponibles avec capteur de température interne (500 kSa/s) Jusqu'à huit PWM à 2 canaux Jusqu'à deux UART Jusqu'à deux bus I²C Jusqu'à deux bus SPI Disposition des broches Thing Plus (ou Feather) : 28 broches PTH Connecteur USB-C : Fonctionnalité hôte/périphérique USB 1.1 Connecteur JST 2 broches pour une batterie LiPo (non incluse) : Circuit de charge 500 mA Connecteur JST Qwiic à 4 broches LED : PWR - Indicateur d'alimentation rouge 3,3 V CHG - Indicateur jaune de charge de la batterie 25 - LED bleue d'état/test ( GPIO 25 ) WS2812 - LED RVB adressable ( GPIO 08 ) Boutons: Boot Reset Broches JTAG PTH Mémoire flash QSPI de 16 Mo Emplacement pour carte µSD Prise mikroBUS Dimensions : 3,7' x 1,2' Quatre trous de montage : Compatible vis 4-40 Téléchargements Schématique Fichiers Aigle Dimensions de la carte Guide de connexion Page d'informations Qwiic Référentiel matériel GitHub

    € 19,95

    Membres € 17,96

  • ESP32-S3-ŒIL

    Espressif ESP32-S3-ŒIL

    L’ESP32-S3-EYE est une petite carte de développement d’Intelligence Artificielle (IA). Elle est basée sur le module SoC (System on Chip) ESP32-S3 et l’ESP-WHO, de la plateforme de développement IA d’Espressif. La carte ESP32-S3-EYE est constituée de deux parties : la carte principale (ESP32-S3-EYE-MB) comprenant le module ESP32-S3-VROOM-1, une caméra de 2 mégapixels, un emplacement pour carte SD, un microphone digital, un port USB, des boutons de contrôle, et la carte auxiliaire (ESP32-S3-EYE-SUB) intégrant un afficheur LCD. La carte principale et la carte auxiliaire sont reliées par des connecteurs enfichables. La carte ESP32-S3-EYE est dotée d’une capacité de stockage importante, comprenant une mémoire PSRAM Octal de 8 Mo et une mémoire flash de 8 Mo. Elle permet la transmission d’images en Wi-Fi et le débogage est assuré par un port micro USB. Spécifications Caméra La caméra 2 MP OV2640 a un champ de vision de 65,5° et une résolution maximum de 1600x1200 pixels. La résolution peut être changée par les applications développées. LED d’alimentation La LED (verte) s’illumine quand l’alimentation USB est reliée à la carte. Si elle est éteinte, le port USB n’est pas alimenté, ou le régulateur de tension LDO 5-3,3 V est défectueux. Par programmation, il est possible d’affecter un comportement différent de la LED reliée au port GPIO3 (allumée, clignotante) correspondant à différents états de la carte.Note : Le port GPIO3 doit-être configuré en mode drain-ouvert. La LED peut être détériorée en forçant le port GPIO3 au niveau haut. Connecteurs mâles enfichables Ils permettent de relier les connecteurs femelles de la carte auxiliaire à la carte principale. Régulateur LDO (Low DropOut) 5 V à 3,3 V Régulateur de tension convertissant la tension d’alimentation de 5 V en 3,3 V, nécessaire à l’alimentation du module. Microphone numérique Le microphone numérique FS MEMS fonctionnant sous 3,3 V, possède un rapport signal / bruit de 61 dB SNR et une sensibilité de -26 dBFS. Connecteur FPC Permet la connexion de la carte principale à la carte auxiliaire. Boutons de contrôle La carte est dotée de six boutons de contrôle. L’utilisateur peut leur affecter une fonction quelconque selon les besoins, à l’exception du bouton RST (Réinitialisation). ESP32-S3-WROOM-1 Le module ESP32-S3-WROOM-1 intègre une variante du chip ESP32-S3R8, apportant la connectivité Wi-Fi et Bluetooth 5 (LE) ainsi qu’un jeu d’instructions vectorielles dédiées à l’accélération des calculs relatifs aux réseaux neuronaux et le traitement du signal. En plus de la mémoire intégrée de 8 Mo Octal SPI PSRAM intégrée au module SoC, celui-ci comprend une mémoire flash à accès rapide de 8 Mo. Le module ESP32-S3-WROOM-1U est également supporté. Lecteur de carte MicroSD Il permet d’insérer une carte d’extension mémoire MicroSD. Régulateur LDO 3,3 V à 1,5 V Régulateur de tension convertissant la tension d’alimentation du module de 3,3 V en 1,5 V nécessaire à l’alimentation de la caméra. Régulateur LDO 3,3 V à 2,8 V Régulateur de tension convertissant la tension d’alimentation du module de 3,3 V en 1,5 V nécessaire à l’alimentation de la caméra. Port USB Un port Micro-USB port permet l’alimentation 5 V de la carte, ainsi que la communication avec le module via les ports GPIO19 et GPIO20. Connecteurs de batterie à souder Ils permettent de souder un connecteur de batterie Li-ion externe servant d’alimentation auxiliaire de la carte. Si vous utilisez une batterie externe, assurez-vous qu’elle soit munie d’un circuit de protection et d’un fusible. Les caractéristiques recommandées pour la batterie sont : capacité >1000 mAh, tension de sortie 3,7 V, tension d’entrée 4,2-5 V. Circuit de charge de batterie Un circuit chargeur linéaire de batterie Li-ion de 1 A (ME4054BM5G-N) de format ThinSOT est présent, il permet la recharge de la batterie par le port USB. LED de batterie (rouge) Lorsque l’alimentation USB est reliée à la carte, si aucune batterie n’est connectée, la LED rouge clignote. Si une batterie est reliée et en cours de charge, la LED est allumée en permanence. La LED reste éteinte quand la batterie est complètement chargée. Accéléromètre Un accéléromètre à trois axes (QMA7981) est utilisé pour la détection de rotation de l’écran etc.

    € 59,95

    Membres € 53,96

Connexion

Mot de passe oublié ?

Vous n'avez pas encore de compte ?
Créer un compte